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ABSTRACT
DNA-binding proteins (DBPs) play pivotal roles in many biological functions such as
alternative splicing, RNA editing, and methylation. Many traditional machine learning
(ML) methods and deep learning (DL) methods have been proposed to predict DBPs.
However, thesemethods either rely onmanual feature extraction or fail to capture long-
term dependencies in the DNA sequence. In this paper, we propose a method, called
PDBP-Fusion, to identify DBPs based on the fusion of local features and long-term
dependencies only from primary sequences. We utilize convolutional neural network
(CNN) to learn local features and use bi-directional long-short term memory network
(Bi-LSTM) to capture critical long-term dependencies in context. Besides, we perform
feature extraction, model training, and model prediction simultaneously. The PDBP-
Fusion approach can predict DBPs with 86.45% sensitivity, 79.13% specificity, 82.81%
accuracy, and 0.661 MCC on the PDB14189 benchmark dataset. The MCC of our
proposed methods has been increased by at least 9.1% compared to other advanced
prediction models. Moreover, the PDBP-Fusion also gets superior performance and
model robustness on the PDB2272 independent dataset. It demonstrates that the PDBP-
Fusion can be used to predict DBPs from sequences accurately and effectively; the online
server is at http://119.45.144.26:8080/PDBP-Fusion/.

Subjects Bioinformatics, Molecular Biology, Computational Science, Data Science
Keywords DNA binding protein prediction, Deep learning, Convolution neural network (CNN),
Long short-term memory network (LSTM), Long-term dependence, Fusion approach

INTRODUCTION
Protein-DNA interactions are widespread in all living organisms. A variety of biological
processes are involved in these interactions including DNA replication, DNA repair, viral
infection, DNA packaging, and DNA modification (Krajewska, 1992; Luscombe et al., 2000;
Lou et al., 2014). In recent years, a larger number of DBP sequences have been generated
by rapid advances in genomic and proteomic techniques. Exploring how protein-DNA
interactions occur help us understand the genome.

In the early days, many experimental techniques have been proposed to predict
DBPs. However, due to the time-consuming and money-consuming disadvantages of
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the experimental method, computational methods show great advantages in processing
sequence data. So far, many effective computational prediction methods have been
developed to identify DNA-binding proteins. They mainly use classic machine learning
prediction models combined with complex feature extraction techniques. These methods
include support vector machines (SVMs) (Cai & Lin, 2003; Bhardwaj et al., 2005; Yu et
al., 2006; Kumar, Gromiha & Raghava, 2007; Zou, Gong & Li, 2013; Zhang et al., 2014;
Liu et al., 2014; Fang et al., 2008), artificial neural networks (ANN) (Stawiski, Gregoret
& Mandel-Gutfreund, 2003; Ofran, Mysore & Rost, 2007), decision tree (Tjong & Zhou,
2007), Bayesian network (Carson, Langlois & Lu, 2010), and Random forest (RF) (Wu
et al., 2009; Kumar, Pugalenthi & Suganthan, 2009; Ma, Guo & Sun, 2016; Rahman et al.,
2018). Support vector machines (SVM) and Random forest (RF) algorithm are widely
used as classifiers for predicting DBPs and get better performance. Many sequence-based
methods and web servers have been developed to identify DBPs. Recent methods and
server names among them are: PseDNA-Pro (Liu et al., 2015), Local-DPP (Wei, Tang
& Zou, 2017), SVM-PSSM-DT (Zaman et al., 2017), BindUP (Paz et al., 2016), PSFM-
DBT (Zhang & Liu, 2017), HMMBinder (Zaman et al., 2017), iDNAProt-ES (Chowdhury,
Shatabda & Dehzangi, 2017), DBPPred-PDSD (Ali et al., 2018), MSFBinder (Liu et al.,
2018), DP-BINDER (Ali et al., 2019), and HMMPred (Sang et al., 2020).

In recent years, stack generalization (stack) as an integrated learning technique has
gained much attention from researchers. StackDPPred (Mishra, Pokhrel & Hoque, 2019)
first used features extracted from PSSM and residue-specific contact energy and then
trained a stack-based machine learning method to predict DBPs. PredDBP-Stack (Wang
et al., 2020) improved DBP prediction performance by exploring valuable features from
the HMM profile. StackPDB (Zhang et al., 2020) took fusion features such as EDT, RPT,
PseAAC, PsePSSM, and PSSM-TPC and then applied the stacked ensemble classifier to
predict DBPs.

More and more evidence shows that it is practical to predict DBPs only from primary
sequences. The traditional machine learning method shows superiority in solving
the problem of small-scale data classification (Bhardwaj et al., 2005; Yu et al., 2006).
Unfortunately, these methods required the use of well-designed sequence features and
evolutionary information features. They also need to be supported by relevant professional
knowledge and experience. Additionally, feature extraction, training and forecasting cannot
be performed simultaneously.

Recently, deep learning has been successfully applied to many big dataset classification
tasks (Collobert et al., 2011; Krizhevsky, Sutskever & Hinton, 2017; Tayara, Soo & Chong,
2018; Tayara & Chong, 2018). Deep learning technology has incomparable advantages in
the computation of large-scale DNA sequence data. For examples, Alipanahi and Delong
first proposed DeepBindmodel based on deep learning technology to predict DNA binding
proteins (Alipanahi et al., 2015). Zeng et al. (2016) predicted DNA binding sites based on
CNN and many transcription factor data. They determined the best performance network
structure by changing the CNN network width, depth, and pool operation design. Zhou et
al. (2017) developed the CNNSite model based on a neural network and combined it with
captured sequence features and evolution features to predict sequence binding residues.
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Shadab et al. proposed DeepDBP-ANN and DeepDBP-CNNmodels to identify DBPs. The
former used a generated feature set trained on the traditional neural network. The latter
used a previously learned embedding and a convolution neural network (Shadab et al.,
2019).

Although several CNN based methods have been developed to predict DBPs, they are
not good enough to achieve better accuracy in DBPs prediction. For instance, Zhang et
al. (2019) developed the DeepSite model, which used Bi-LSTM and then CNN to capture
long-term dependencies between the sequence motifs in DNA. Qu et al. (2017) used word
embedding to encode sequences and then used CNN and LSTM as a classifier to predict
DBPs. Hu et al. proposed CNN-BiLSTM method to identify DBPs. They coordinated a
Bi-LSTM and a CNN (Hu, Ma &Wang, 2019) and also used word embedding technology.
Recently, Du et al. (2019) developed a deep learning method named MsDBP, which
obtained four-vectors (multi-scale features) based on 25%, 50%, 75%, and 100% of the
original sequence length. Moreover, they used many dense layers to learn different abstract
features for predicting DBPs (Du et al., 2019).

These methods based on CNN can only represent the local dependence of the DNA
sequence information, but the long-term dependence of the sequence is not considered. It is
a better choice to predict DBPs by fusing the local features obtained by CNN with the long-
term context-dependent features captured by Bi-LSTM. Although some existing methods
also combined CNN and LSTM to predict DBPs, they both completed the preprocessing
of gene sequences based on word embedding. The One-hot encoding method used in this
paper is simple and effective, and the pre-processing is more efficient. In addition, we also
need to consider the design of a convolutional neural network with the size, characteristics,
and distribution of the sequence data.

In this study, we develop the PDBP-Fusion method to overcome the disadvantages of
the existing methods. One-hot encoding was used in this approach, which is easier and
faster than word embedding. Moreover, CNN was used to obtain the local features of DNA
sequences through self-learning, and Bi-LSTMwas used to capture long-term dependencies
in the sequence context. Finally, a fusion feature combining local and global characteristics
was used to predict DBPs. The contributions of this research are described as follows
(1) Since the length of the DNA sequence variation, the optimal sequence length is

determined using experiments to obtain the best sequence characteristics. In this
article, a grid search method based on the sequence length distribution is suggested to
search for the best truncated sequence length parameters.

(2) A new method, PDBP-Fusion, has been developed based on deep learning to predict
DBPs. It consists of a CNN network and a Bi-LSTM network. The former is responsible
for extracting the abstract features layer by layer. Simultaneously, the latter is responsible
for obtaining long-term dependencies in the sequence context.

(3) The proposed method does not require manual extraction of data features; it uses only
deep learning to self-learn original sequence features based on the primary sequence.
Two coding practices, One-hot and word embedding, were used to predict DNA
binding sites. The optimal network structure was found by a parameter grid-search
strategy based on the benchmark data set for predicting DBPs.
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MATERIALS & METHODS
In this section, we first introduce the benchmark dataset and the independent test dataset.
Next, we describe our proposed PDBP-Fusion framework. Finally, we illustrate all the
details concerning the construction of the model, the evaluation of the model and the
experimental setting of the parameters.

Datasets
We use the benchmark dataset obtained from Ma, Guo & Sun (2016) referred to as
PDB14189. The PDB14189 dataset is composed of 7,129 DBPs (positive samples) and
7,060 non-DBPs (negative samples). All of them are from the UniProt (Apweiler et al.,
2012) database. This dataset is identical to MsDBPs (Du et al., 2019).

In addition, we used an independent test dataset, PDB2272, to compare the performance
of our proposed model with other existing prediction methods (Rahman et al., 2018; Liu et
al., 2015; Wei, Tang & Zou, 2017; Du et al., 2019). We obtained original dataset consisting
of 1,153 DBPs and 1,153 non-DBPs from Swiss-Prot. We removed sequences that had
more than 25% similarity and filtered out sequences with irregular characters (‘‘X’’ or
‘‘Z’’). Finally, the PDB2272 dataset contained 1,153 DBPs and 1,119 non-DBPs.

Framework of the PDBP-fusion model
In this study, we develop a deep learning model called PDBP-Fusion, which combined
CNN and Bi-LSTM, to predict DNA binding proteins. The former obtained local DNA
sequences through self-learning and the latter learned the long-term dependencies in the
sequence context. The proposed models consist of the sequence encoding layer (one-hot
encoding or embedding encoding), the local feature learning layer, the long-term context
learning layer, and the synthetic prediction layer. Figure 1 illustrates the main framework
of the PDBP-Fusion model.
Sequence encoding
Feature coding is a critical task in building machine learning models. And it is preferable
to obtain a suitable coding scheme after observing the characteristics of the dataset. The
statistical results showed that the sequence length of the DNA benchmark database ranged
from 50 to 2,743. The sequence length distribution is provided in Fig. 2.
Since the sample length of the DNA sequence varies, it is necessary to choose an appropriate
maximum sequence length for data processing. A maximum length was chosen as the best
experimental endpoint reference for the PDBP-Fusion model, as determined by a series
of experiments between 100 and 1,000. Further details on the results of the comparison
experiment are available in section 3.2.

(a) One-hot encoding
One-hot encoding is a general method that can vectorize any categorical features. In the

One-hot encoding method, amino acid must be encoded numerically.
For example, a DNA sequence ‘‘S= EFDYVICEEE’’ was taken from Fig. 3A and encoded

with the One-hot approach. An output vector, with a dimension of 21*d, was obtained
from a word embedding encoding of the input sequence S={S0,S1,S2,...Sd}.

(b) Embedding encoding
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Figure 1 Architecture of the proposed PDBP-Fusion model.
Full-size DOI: 10.7717/peerj.11262/fig-1

Embedding is used to represent discrete variables as continuous vectors. It produces a
dense vector with a fixed, arbitrary number of dimensions. Word embedding is one of the
most popular representation of document vocabulary. The word embedding (Collobert et
al., 2011) representation can reveal many hidden relationships between phrases.

When using word embedding, the input sequence is converted into a numerical code
based on Table 1, and the digitally encoded protein sequence is converted into dense
vectors.

During this period, the sequence encoding layer generates a fixed-length feature
represented by Encode1 from the DNA binding protein sequence, using One-hot encoding
or Word embedding encoding.

Encode1= Encode(S0,S1,S2,...Sn). (1)
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Figure 2 Statistical graph of DNA sequence length distribution in the PDB14189 dataset.
Full-size DOI: 10.7717/peerj.11262/fig-2

Figure 3 Coding diagram of (A) One-hot encoding and (B) word embedding encoding.
Full-size DOI: 10.7717/peerj.11262/fig-3

Local feature learning
A convolutional neural network was utilized to detect the functional domains of protein
sequences. The local feature-leaning layer consisted of several blocks that performed
convolution, batch-normalization, ReLU, and max-polling operation. Figure 4 presents
the concrete structure.
This layer can use a One-hot encoding or word embedding encoding approach before the
CNN structure. The specific network structure and parameter are discussed in section 2.6.
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Table 1 Amino acid encoder.

Amino acids Encode (‘‘A:1’’ denote ‘‘encode A with number 1’’)

A:1, C:2, D:3, E:4, F:5, G:6, H:7, I:8, K:9, L:10, M:11, N:12,
P:13, Q:14, R:15, S:16, T:17, V:18, W:19, Y:20A∼Z (except B,

J, O, U, X, Z) B, J, O, U, X, Z:0

Figure 4 CNN network structure.
Full-size DOI: 10.7717/peerj.11262/fig-4

Experimental results using different encoding methods are presented in section 3.1, 3.2
and 3.3.

The local feature learning layer generates a representation of fixed length features which
can be designated as Local2.

Local2= Local(encode0,encode1,encode2,...encoden). (2)

Long-term context learning
CNN-based prediction methods can get only the local characteristics of gene sequences.
Since the gene sequence is long enough, it is desirable to use BI-LSTM to identify long-term
dependencies. In our proposed model, the long-term context learning layer results in a
characteristic representation of a fixed length, designated by Long_term3.

Long_term3= Long_term(local0,local1,local2,...localn). (3)

Synthetic prediction
The entry of the previous layer was concatenated into a vector and then went through a
fully connected layer. Next, the hidden neurons ‘‘vote’’ on each of the labels, and the winner
of that vote is the classification decision. The sigmoid function was used as the network
activation function and cross-entropy function as the loss function. The fully connected
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Figure 5 Model evaluation on benchmark datasets PDB14189.
Full-size DOI: 10.7717/peerj.11262/fig-5

layer generates output represented by Sout.

Sout= Synthetic
(
long_term0,long_term1,long_term2,...long_termn

)
. (4)

Model construction and evaluation
Several validation methods were used to evaluate the performance of the proposed models.
In a series of publications (Krajewska, 1992; Luscombe et al., 2000; Lou et al., 2014; Cai &
Lin, 2003; Bhardwaj et al., 2005; Yu et al., 2006) in the field of Bioinformatics, k-fold cross-
validation was widely used. In this paper, all experiments used 5-fold cross-validation to
assess model performance on the PDB14189 dataset. Due to the relatively broad fluctuation
range of the prediction results based on deep learning, the k-fold (k = 5) cross-validation
was repeated five times. The average value was used in assessing the performance of the
model. When evaluating model performance on the PDB14189 dataset, we follow the steps
which illustrated in Fig. 5.

Step 1. Take 11,351 samples as the training set and take 2,838 as the test set.
Step 2. Divide the 11,351 samples into two sections: (1) 10,215 samples were used for training,

and (2) the remaining 1,136 samples were used for verification.
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Step 3. Repeat k-fold (k = 5) cross-validation five times. The mean value was used to measure
the performance of the model.
We conduct the independent test on the PDB2272 dataset as follows

Step 1. Train the PDBP-Fusion model, which take 80% of the samples in PDB14189 as a
training set and use the rest (20%) as a validation set.

Step 2. Save the well-trained PDBP-Fusion model with the optimal parameter configuration,
and then predict the PDB2272 independent dataset.

Step 3. Compare the prediction results with other methods to evaluate model generalization.
Five evaluation indicators, including accuracy (ACC), precision (PRE), sensitivity (SE),

specificity (SP), Matthew’s Correlation Coefficient (MCC), were used as the performance
measure. The various performance measures were defined as follows

ACC= (TP+TN)
(TP+NP+FP+FN)

(5)

PRE= TP
(TP+FP)

(6)

SE= TP
(TP+FN)

(7)

SP= TN
(TN+FP)

(8)

MCC= (TP*TN−FP*FN)√
((TP+FP)∗ (TP+FN)∗ (TN+FP)∗ (TN+FN))

(9)

TN, FN, TP, and FP represent the number of true negative, false negative, true positive,
and false positive samples predicted. The area under the ROC (AUC) (Fawcett, 2004) is
also used to evaluate prediction performance.

Experimental parameter conguration
The entire procedure was implemented based on the Keras framework. Complete codes,
including the One-hot code, word-embedding code, CNN, Bi-LSTM, PDBP-CNN, and
PDBP-Fusion code, are provided via http://119.45.144.26:8080/PDBP-Fusion/. Table 2
gives the detailed parameters of the proposed models.

RESULTS
In this section, we first elaborate two series of comparative experiments based on different
lengths of the sequence dataset. Next, we select other model parameters such as dropout
ratio and convolution kernel size to obtain the optimal parameter configuration of the
PDBP-Fusion model. Finally, we present the performance of PDBP-Fusion with other
published studies on the same benchmark dataset PDB14189 and the independent dataset
PDB2272.

Performance comparison of PDBP-CNN models using One-hot
encoding
During the data processing phase, we selected different max length from 500 to 1,000 to
encode the DNA sequence. Then we evaluate the overall performance of the PDBP-CNN
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Table 2 Parameters details of the proposed models.

Layers PDBP-CNN Output shape PDBP-Fusion Output shape

1 One-hot encoding Len*20 One-hot encoding Len *20
2 Convolution1 (kernel=7, stride=1) Len *64 Convolution1 (kernel=9, stride=1) Len *64
3 Max-polling1 (kernel=2) (Len / 2) *64 Max-polling1 (kernel=2) (Len / 2) *64
4 Convolution2 (kernel=7, stride=1) (Len / 2) *64 Convolution2 (kernel=9, stride=1) (Len / 2) *64
5 Max-polling2 (kernel=2) (Len / 4) *64 Max-polling2 (kernel=2) (Len / 4) *64
6 Convolution3 (kernel=7, stride=1) (Len / 2) *64 Bi- LSTM(32) 150*64
7 Max-polling3 (kernel=2) (Len / 8) *64 Dense(128) 128
8 Dense (128) 128 Dense(2) 2
9 Dense (2) 2

Notes.
‘‘Len’’ denotes the input sequence max length.

Table 3 Quantitative results of the PDB-CNNmethod with different maximum sequence lengths.

Lmax ACC (%) SE (%) PRE (%) SP (%) MCC (%) AUC (%)

100 76.51 73.83 83.53 69.43 54.05 85.26
150 78.85 76.92 83.29 74.37 58.27 87.21
200 79.48 77.9 83.28 75.64 59.55 88.02
250 80.38 78.61 84.17 76.56 61.21 88.71
300 80.72 79.42 83.70 77.71 61.90 89.06
350 81.04 77.95 87.32 74.71 62.86 89.42
400 81.28 78.34 87.39 75.11 63.40 89.7
450 81.52 79.21 86.20 76.80 63.59 89.94
500 81.55 78.72 87.36 75.68 63.89 90.00
550 81.32 78.52 87.21 75.38 63.46 89.86
600 81.88 80.64 84.67 79.05 64.21 90.18
650 81.74 80.58 84.49 78.97 63.97 90.12
700 81.79 78.22 88.83 74.68 64.42 90.13
750 81.68 79.04 87.07 76.24 64.08 89.92
800 81.71 78.33 88.44 74.92 64.28 90.11
850 82.02 79.25 87.49 76.50 64.69 90.29
900 81.94 79.09 87.51 76.32 64.53 90.13
950 81.91 79.50 86.74 77.03 64.44 90.24
1000 82.04 80.33 85.40 78.65 64.43 90.05
>1000 – – – – – –

model based on One-hot encoding. When the maximum sequence length exceeded 1,000,
it became impossible to finish the 5-fold cross-validation experiment five times due to
excessive memory consumption. Table 3 shows the experimental results.

Table 3 shows that convolutional neural networks can learn sophisticated features.
The best performance (MCC = 64.69% and ROC-AUC = 90.29%) was achieved with a
sequence length equals 850. However, model performance did not increase monotonically
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Table 4 Quantitative results of the PDBP-Fusion method with different maximum sequence lengths.

Lmax ACC (%) SE (%) PRE (%) SP (%) MCC (%) AUC (%)

100 77.28 74.53 83.99 70.50 55.42 85.79
150 78.91 76.62 84.24 73.53 58.57 87.36
200 80.08 77.88 84.77 75.35 60.71 88.33
250 80.74 79.51 83.56 77.89 61.9 88.96
300 81.44 79.57 85.25 77.60 63.33 89.50
350 82.27 80.39 85.8 78.71 64.83 90.01
400 81.70 79.48 86.38 76.98 64.12 90.11
450 82.30 79.36 87.84 76.71 65.15 90.37
500 82.50 79.58 87.95 77.01 65.54 90.43
550 82.16 79.97 86.56 77.72 64.90 90.37
600 82.56 80.87 85.90 79.18 65.50 90.61
650 82.81 80.84 86.56 79.03 66.02 90.7
700 82.81 81.02 86.45 79.13 66.1 90.83
750 82.66 80.51 86.82 78.45 65.8 90.65
800 82.7 79.99 87.8 77.56 65.95 90.74
850 82.71 80.51 86.93 78.44 65.89 90.73
900 82.63 80.06 87.61 77.61 65.85 90.69
>900 – – – – – –

as maximum sequence lengths increased. The experimental results showed little difference
when themaximum sequence length exceeds 700 under the same structural networkmodel.

Performance comparison of PDBP-Fusion models using One-hot
encoding
Previously, the classic CNN network model was used for prediction, which does not obtain
the long-term context dependencies in sequences. This subsection describes the use of
PDBP-Fusion to evaluate performance. Table 4 presents the comparative experimental
results.

In this series of experiments, the best performances (MCC of 66.1% and ROC-AUC of
90.83%) were achieved. Experience has shown that the performance of the PDBP-Fusion
model does not improve with increasing sequence length. When the sequence length is 700,
the optimum performance was achieved, after which it gradually decreased. Experiments
show that the Bi-LSTM network can capture long-term dependencies even with a sequence
length of less than 700.

Performance comparison of PDBP-Fusion models using word
embedding
In this section, we reported the model performances of PDBP-CNN and PDBP-Fusion
based on word embedding encoding. We conducted two identical experiments with
different sequence lengths that vary from 100 to 1,000. After the sequence length exceeded
1,000, it became impossible, as before, to complete the 5-fold cross-validation five times
due to excessive GPU memory consumption. The best performances listed in Table 5 are
each presented with their two best-archived results for all sequence lengths. Experiments
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Table 5 PDBP-Fusion model performance using a word embedding encoding on the PDB14189
dataset.

Methods ACC (%) SE (%) SP (%) MCC (%) AUC (%)

PDBP-Fusiona 81.01 78.48 81.58 62.0 89.03
PDBP-Fusionb 79.40 83.60 75.15 59.1 87.81

Notes.
aPDBP-Fusion model: (length= 800, word embedding encoding, 64 convolution kernels).
bPDBP-Fusion model: (length= 800, word embedding encoding, 32 convolution kernels).

Figure 6 MCCs and AUCs of the top three proposed models.
Full-size DOI: 10.7717/peerj.11262/fig-6

have shown that the PDBP-Fusion approach can obtain all-round performance advantages
superior to the PDBP-CNN method based on word embedding encoding.

Model parameter selection and optimization
Based on the comparative experiments in section 3.1, 3.2 and 3.3, it is apparent that PDBP-
CNN and PDBP-Fusion with the One-hot encoding approach showed better performance
than the word embedding practice. Figure 6 shows that the PDBP-Fusion model with
One-hot encoding obtained the best results (MCC= 66.10%, AUC= 90.83%) and that the
PDBP-CNN model with one-hot encoding obtained the second-best performance result
(MCC = 64.69%, AUC = 90.29%).
The best-performing architectures were then identified by varying the CNN convolution
kernel width and the dropout ratio, as described in the following sections. The previous
two best model performances were improved by tuning the network parameters.

Selecting dierent dropout ratio s in CNN
As shown in Fig. 7, the variation range of dropout parameters of the PDBP-Fusion model
was [0.1,0.2,0.3,0.4], whereas the other parameters remained unchanged. MCC and AUC
both reached their optimal values when dropout ratio = 0.3. In the same case, the optimal
performance of the PDBP-CNN model was achieved when dropout ratio = 0.2.
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Figure 7 MCCs and AUCs of models with different dropout ratios (violin plot).
Full-size DOI: 10.7717/peerj.11262/fig-7

Figure 8 MCCs and AUCs of models with different dropout rates (box plot).
Full-size DOI: 10.7717/peerj.11262/fig-8

Selecting dierent convolution kernels in CNN
As shown in Fig. 8, the convolution kernel size parameter of the PDBP-Fusion model varies
in the range of [5,7,9], whereas the other parameters remained unchanged. The model
achieved optimal performance (MCC = 66.10%, AUC = 90.83%) when the convolution
kernel size = 9. In the same case, the optimal performance of the PDBP-CNN model was
reached when the convolution kernel size = 7.

The optimal models for PDBP-CNN and PDBP-Fusion were identified based on a series
of experiments. Table 6 gives details of these performance results. The encoding approach
and the network design parameters are listed for each.
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Table 6 Peak performance of PDBP-CNN and PDBP-Fusion models on the PDB14189 dataset.

Methods ACC (%) SE (%) SP (%) MCC (%) AUC (%)

PDBP-CNNa 82.02± 1.22 87.49± 4.12 76.50 ± 5.66 64.69± 1.87 90.29 ± 0.51
PDBP-Fusionb 82.81± 1.30 86.45± 4.59 79.13 ± 5.81 66.1± 2.04 90.83 ± 0.57

Notes.
aPDBP-CNN model: The maximum length is 850. The convolution layer has three layers, the convolution kernel is (7*1), the
maximum pooling size is (2,1), and the total connection layer has 128 nodes. The dropout rate is set to 0.2.

bPDBP-Fusion model: The maximum length is 700. The convolution layer has two layers, the convolution kernel is (9*1), the
maximum pooling size is (2,1), the number of cells in Bi-LSTM is set to 16*2, and the total connection layer has 128 nodes.
The dropout rate is set to 0.3.

Performance comparison on the benchmark dataset
In this section, we compare the performance of PDBP-Fusion with previously published
methods such as DNABP (Ma, Guo & Sun, 2016), MsDBP (Du et al., 2019) and
StackDPPred (Mishra, Pokhrel & Hoque, 2019) approach on the same benchmark dataset.
The DNABP approach (Ma, Guo & Sun, 2016) combines various carefully selected manual
features beyond the scope of this work. They rely on biological databases and require
biological expertise. The PDBP-CNN and PDBP-Fusion methods are based only on the
primary sequence and do not require manual feature extraction.

A comparison experiment based on StackDPPred (Mishra, Pokhrel & Hoque, 2019) and
One-hot encoding were carried out on the PDB14189 dataset. We first use One-hot for
encoding an input sequence and then flatten the input vector. We entered these features
into StackDPPred method and explored Base and Meta Classifiers. In order to find the
base-classifiers to use in the first stage and the meta-classifier to use in the second stage
of stacking framework, four different machine learning algorithms such as SVM, KNN,
LogReg and RDF were explored. Figure 9 shows the StackDPPred prediction framework
using One-hot encoding.

We optimize each classifier by cross-validation based on 50% of the PDB14189 dataset.
And we evaluate the trained model’s performance on the remaining 50% of the PDB14189.
(i) SVM: The best values of the base-classifier SVM parameters are C = 1 and γ = 0.0001.

Likewise, the best values of the parameters of the SVM, used as meta-classifier, are
C = 1 and γ = 0.0001.

(ii) Logreg: In our implementation, we find C = 0.0400 results in the best accuracy.
(iii) RDF: In our implementation of the RDF ensemble learner, we have used bootstrap

samples to construct 2,000 trees in the forest.
(iv) KNN: In this work, the value of k is set to 6, and all neighbours are weighted uniformly.

Table 7 indicates that the PDBP-Fusionmethods achieved better performance than some
random forest classifier models (Ma, Guo & Sun, 2016) with manually extracted features
such as PSSM, PSSM-PP, PHY, etc. Our approach used the characteristics of deep learning
and self-learning ability to identify DBPs based only on the sequences. Experimental
results show that the performance of the PDBP-Fusion method was significantly improved
compared with that of MsDBP. The MCC values for PDB-CNN and PDB-Fusion increased
by at least 9.1% and 6.7% respectively. The AUC values increased by 2.8% and 2.2%,
respectively.
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Figure 9 Overview of the StackDPPred prediction framework based on One-hot encoding.
Full-size DOI: 10.7717/peerj.11262/fig-9

Performance comparison on the independent test datasets
The PDBP-Fusion model was then evaluated on the independent dataset (PDB2272) to
verify its robustness. The comparison covered the proposed method with other advanced
methods. Table 8 shows the experimental results.

In Table 8, the ACC value of PDBP-Fusion on PDB2272 exceeds other prediction
methods. The ACC of PDBP-Fusion is 77.77%, which is 16.7% higher than the ACC
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Table 7 Comparison of the proposed model with other methods on the PDB14189 dataset.

Methods ACC (%) SE (%) SP (%) MCC (%) AUC (%)

MsDBP 80.29 80.87 79.72 60.61 88.31
PSSMa 79.62 76.02 83.21 59.4 –
PSSM-PPa 81.69 78.92 84.45 63.5 –
PHYa 77.65 73.54 81.76 55.5 –
PSSM-PP+BP_NBPa 83.68 81.01 86.34 67.4 –
PSSM-PP+PHYa 82.67 79.95 85.39 65.4 –
BP± NBP+PHYa 80.40 76.88 83.92 60.9 –
ALL featuresa 84.64 82.23 87.06 70.6 –
64 Optimal featuresa 86.90 83.76 90.03 72.7 –
StackDPPred(One-hot)b 76.00 79.27 72.71 52.10 83.18
PDBP-CNN 82.02 87.49 76.50 64.69 90.29
PDBP-Fusion 82.81 86.45 79.13 66.1 90.83

Notes.
aDNABP method which using RF classifier and various features (Ma, Guo & Sun, 2016).
bStackDPPred(One-hot) method using StackDPPred and One-hot encoding (Mishra, Pokhrel & Hoque, 2019).

Table 8 Comparison of various machine learning methods on the PDB2272 dataset.

Methods ACC (%) SE (%) SP (%) MCC
(%)

AUC
(%)

Qu et al. (Qu et al., 2017) 48.33 49.07 48.31 −3.34 47.76
Local-DPP (Wei, Tang & Zou, 2017) 50.57 58.72 8.76 4.56 –
PseDNA-Pro (Liu et al., 2015) 61.88 59.90 75.28 24.30 –
DPP-PseAAC (Rahman et al., 2018) 58.10 59.10 56.63 16.25 61.00
MsDBP (Du et al., 2019) 66.99 66.42 70.69 33.97 73.83
PDBP-Fusion 77.77 73.31 66.85 56.65 85.39

of MsDBP (77.77% vs 66.99%). From the perspective of model stability, the MCC of
PDBP-Fusion is 0.5665, which is 66.8% higher than the MCC of MsDBP. It demonstrates
that the PDBP-Fusion model has got superior performance and model robustness on the
PDB2272 independent dataset.

Web server for PDBP-Fusion
Many advancedmethods (Chen et al., 2017;Qiu et al., 2018;Cheng et al., 2019;Chou, Cheng
& Xiao, 2019) provide an available Web server and prediction tool for users to predict
DBPs online. We also offer a Web server at http://119.45.144.26:8080/PDBP-Fusion/.
Additionally, we provide all the steps to get the predicted results for convenience.

Step 1. Click the link, and you will see the index page is shown in Fig. 10.
Step 2. Click the ‘‘Download’’ link, and you can download the benchmark dataset, independent

dataset, and the codes.
Step 3. Either type or copy and paste the protein sequence into the input box in Fig. 10, Click

the ‘‘Predict’’ button to see the predicted results.
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Figure 10 Index page of the web server.
Full-size DOI: 10.7717/peerj.11262/fig-10

CONCLUSIONS
The CNN based method alone is not accurate enough in predicting DBPs from DNA
sequences. In this his study, the CNN network was used to find suitable local features,
and Bi-LSTM was used to capture long-term dependencies among DNA sequences. It
is preferable to predict DBPs by merging the local features obtained by CNN with the
long-term context-dependent features captured by Bi-LSTM. Some existing methods have
also combined CNN and LSTM to predict DBPs, but they completed the pre-processing
of gene sequences based on word embedding. The One-hot encoding method used in this
study is straightforward and more efficient than word embedding. It is also necessary to
consider designing a convolutional neural network reasonably to match the DNA sequence
data’s characteristics and distribution.

The PDBP-Fusion method proposed in this paper has demonstrated its significance on
the PDB14189 benchmark dataset and its performance relative to the outcomes of existing
methods on the PDB2272 independent dataset. The proposed method showed remarkably
higher generalization ability compared with existing methods. Furthermore, this study
suggests that the fusion approach, combining local features and long-term dependencies,
will be necessary for sequence-based tasks in genomics. It also provides a solution to other
sequential prediction problems.
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